
Autonomous Vision-based Rotorcraft Landing and
Accurate Aerial Terrain Mapping in an Unknown

Environment

Todd R. Templeton

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-18

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-18.html

January 22, 2007



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
22 JAN 2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Autonomous Vision-based Rotorcraft Landing and Accurate Aerial
Terrain Mapping in an Unknown Environment 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In this report, we present research toward a vision-based landing system for unmanned rotorcraft in
unknown terrain that is centered around our Recursive Multi-Frame Planar Parallax algorithm for
high-accuracy terrain mapping. We give an in-depth description of the vision system, an overview of our
experimental platforms, and both synthetic and experimental terrain mapping results. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

91 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Copyright © 2007, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
The author gratefully acknowledges the efforts of Christopher Geyer, David
Shim, Shankar Sastry, and Marci Meingast, with whom significant portions
of this work were coauthored. This material is used with the permission of
the coauthors (and with the permission of the publishers, where
applicable).
 
This work was supported by the following grants: ARO DAAD 19-02-1-0383
and Boeing SEC BAI-Z40705R.



Autonomous Vision-based Rotorcraft Landing and Accurate
Aerial Terrain Mapping in an Unknown Environment

by Todd R. Templeton

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor S. Shankar Sastry
Research Advisor

Date

* * * * * *

Professor Ruzena Bajcsy
Second Reader

Date



Contents

Acknowledgments iv

Abstract 1

1 Introduction 2

2 Vision System Overview 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Recursive Multi-Frame Planar Parallax Algorithm . . . . . . . . . . . 7
2.3 Motion Stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Modular Elevation and Appearance Map, and Landing Site Quality . . . . . 9
2.5 Target Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 High-level Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The Recursive Multi-Frame Planar Parallax Algorithm 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Analysis of Depth Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Multi-Frame Planar Parallax . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Nonrecursive Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Recursive Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Computation of γ and Flows . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Complete Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.A World Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Probabilistic Motion Stamping 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



5 Analytical Motion Stamping 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Experimental Platform 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Vehicle Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Vehicle Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Extrinsic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Results 74
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Results From Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Results From Experimental Data . . . . . . . . . . . . . . . . . . . . . . . 78
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Conclusion 81

ii

Redaction Notice:
Portions of the original document were reprinted from C. Geyer, T. Templeton, 
M. Meingast, and S. Sastry, "The recursive multi-frame planar parallax algorithm," 
in Proceedings of Third International Symposium on 3D Data Processing, 
Visualization and Transmission, 2006. Permission was obtained from the 
publisher for limited distribution. However, for mass distribution, these reprinted 
portions have been marked and removed; please refer to the original paper.



List of Figures

1.1 The Berkeley UAV testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Vision system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 View of the landing target from the air. . . . . . . . . . . . . . . . . . . . . 12
2.3 An experimental ROC curve of the landing target detector. . . . . . . . . . 13
2.4 Plans for the high-level planner. . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Idealized flight for purposes of analyzing range accuracy. . . . . . . . . . . 20
3.2 Predicted standard deviations for stereo and multi-baseline as a function of

range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Uncertainty in disparity and range for a translating camera. . . . . . . . . . 26

4.1 Model coordinate frames and transformations. . . . . . . . . . . . . . . . . 37
4.2 Iterated extended Kalman filter. . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Synthetic experiment: screw trajectory. . . . . . . . . . . . . . . . . . . . . 46
4.4 Synthetic experiment: first frame. . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Synthetic experiment: last frame. . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Sensitivity to error in GPS/INS measurement time. . . . . . . . . . . . . . 56
5.2 Sensitivity to error in feature equations. . . . . . . . . . . . . . . . . . . . 57
5.3 Comparison of true and estimated trajectories. . . . . . . . . . . . . . . . . 58

6.1 System architecture of the UAV testbed. . . . . . . . . . . . . . . . . . . . 61
6.2 Flight control system architecture with MPC-based trajectory generator. . . 64
6.3 Three-point waypoint specification and MPC-based trajectory generation. . 66
6.4 Experimental trajectory-following result. . . . . . . . . . . . . . . . . . . . 68
6.5 Camera to GPS/INS calibration. . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 Sample rendered image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Experimental comparison of reconstruction algorithms. . . . . . . . . . . . 76
7.3 Synthetic images experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Boeing real images experiment. . . . . . . . . . . . . . . . . . . . . . . . 79
7.5 Berkeley real images experiment. . . . . . . . . . . . . . . . . . . . . . . . 80

iii



Acknowledgments

The author gratefully acknowledges the efforts of Christopher Geyer, David Shim, Shankar

Sastry, and Marci Meingast, with whom significant portions of this work were coauthored.

In particular, Chapter 3 and portions of Chapter 7 are based on published work coauthored

with Christopher Geyer, Marci Meingast, and Shankar Sastry [1], and Chapter 2 and por-

tions of Chapters 6 and 7 are based on unpublished work coauthored with David Shim,

Christopher Geyer, and Shankar Sastry [2]. This material is used with the permission of

the coauthors (and with the permission of the publishers, where applicable).

Additional thanks are due to Shankar Sastry and for his roll as advisor, and to Christo-

pher Geyer, Jonathan Sprinkle, and Ruzena Bajcsy for providing additional advice and

assistance beyond the call of duty.

Finally, the author wishes to thank his family for putting him on a successful path in

life, and his fiancée Cheryl for supporting him on a daily basis.

This work was supported by the following grants: ARO DAAD 19-02-1-0383 and Boeing

SEC BAI-Z40705R.

iv



Abstract

In this report, we present research toward a vision-based landing system for unmanned

rotorcraft in unknown terrain that is centered around our Recursive Multi-Frame Planar

Parallax algorithm [1] for high-accuracy terrain mapping. We give an in-depth description

of the vision system, an overview of our experimental platforms, and both synthetic and

experimental terrain mapping results.
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Chapter 1

Introduction

The research in this report was born from a desire to reconstruct terrain from aerial im-

agery online in real time, at high altitudes, at an extreme level of accuracy; to integrate this

terrain information into a global map that an intelligent UAV could use to make informed

decisions; and to be able to efficiently analyze this map as it is created to find safe land-

ing locations for an unmanned rotorcraft. Dissatisfied with the usual sensing paradigms,

namely laser scanners (which are easily detected and which require high-powered beams

that are energy- and weight-intensive for operation at high altitudes) and stereo cameras

(which are highly inaccurate at high altitudes using baselines that can be accommodated on

a vehicle), we conceived a novel high-accuracy real-time visual reconstruction paradigm

using a single moving camera, namely the Recursive Multi-Frame Planar Parallax algo-

rithm [1].

Experimental validation for the mapping and landing scheme was performed on a full-

sized helicopter with the cooperation of Boeing Phantom Works, as well as on a smaller

rotorcraft at UC Berkeley (see Figure 1.1). Although inaccuracy in current real-time camera

localization algorithms ultimately prohibited us from performing the high-accuracy map-

ping task online in real time, we were able to demonstrate accurate real-time performance

for all other parts of the system by performing the camera localization offline. We believe

2



Figure 1.1: The Berkeley UAV testbed: an electrically-powered, MPC-controlled rotorcraft
for vision-based landing and terrain mapping. Courtesy of David Shim.

that accurate real-time camera localization is required for any system that wishes to inte-

grate high-altitude terrain measurements over time and motion into a single global map,

and we are confident that further work in this area will produce algorithms that are up to

the challenge.

The vision landing problem has been addressed in many previous research projects,

although many, including [3], [4], [5], [6], and [7], require an easily-recognizable landing

target. No landing target is used in [8], although it is assumed that the visual axis of the

camera is perpendicular to the ground and that the image contrast is higher at the boundary

of obstacles than anywhere else. The approach most similar to ours is that of A. Johnson et

al. at JPL [9], although their use of only two images at a time (a wide-baseline stereo pair

over time from a single camera) restricts their 3D reconstruction accuracy at high altitudes.

The remainder of this report is organized as follows: In Chapter 2, we give an overview

of the vision system for autonomous rotorcraft landing and mapping. In Chapter 3, we

give a more in-depth treatment of the Recursive Multi-Frame Planar Parallax algorithm. In

Chapters 4 and 5, we discuss two real-time camera localization techniques that were inves-

3



tigated during the course of the project, giving an analysis of their accuracy. In Chapter 6

we discuss the vehicle platforms on which the system was tested, and in Chapter 7 we give

synthetic and experimental results. Finally, in Chapter 8 we conclude.
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Chapter 2

Vision System Overview

Much of the content of this chapter is based on unpublished work coauthored with David

Shim, Christopher Geyer, and Shankar Sastry [2]. This material is used with the permission

of the coauthors.

2.1 Introduction

The computer vision problem that we address in this project is one of 3D terrain reconstruc-

tion and analysis. In particular, we are trying to find suitable landing locations, i.e. regions

that are large enough to safely land the helicopter that are flat and free of debris, have a

slope of no more than 4 degrees, have been confidently mapped, (possibly) are similar to a

desired constant appearance, and (optionally) contain a distinctive landing target1. Despite

the availability of high-accuracy active technologies such as radar and LIDAR, we use a

camera for this task because it is passive (and hence difficult to detect), and because such

active technologies require high-powered beams that are energy- and weight-intensive for

operation at high altitude.

The vision system (see Figure 2.1) consists of a feature tracking thread, which tracks

1The landing target is only used to enable the operator to choose a specific location if many locations are
suitable—the vision system always ensures that all other requirements are satisfied.
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Figure 2.1: Vision system architecture. Note that the target detector is optional and does
not replace 3D terrain reconstruction using the Recursive Multi-Frame Planar Parallax
(RMFPP) algorithm.

distinctive image points through the image sequence and stores them in the feature repos-

itory; a motion stamping thread, which uses GPS/INS data and feature tracks to estimate

the global position and orientation of the camera when each image was captured and to

estimate the 3D locations of the tracked features (the latter of which are used to choose

the best reference plane for the Recursive Multi-Frame Planar Parallax algorithm); and the

mapping thread, which adds 3D points to its modular elevation and appearance map using

the Recursive Multi-Frame Planar Parallax algorithm. The vision system also includes two

interchangeable sets of external interfaces: in flight mode, it uses a custom Firewire capture

thread, which stores timestamped captured images in a frame repository, and an external

communication thread, which receives GPS/INS and other vehicle state data from, and

sends desired trajectory information to, the vehicle control computer; in simulation/replay

mode the Firewire capture thread is replaced by a custom simulation/replay thread, and

all communication through the external communication thread is redirected to the simula-

tion/replay thread.
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2.2 The Recursive Multi-Frame Planar Parallax

Algorithm

The cornerstone of our approach is our novel Recursive2 Multi-Frame Planar Parallax

(RMFPP) algorithm [1]. The RMFPP algorithm is a direct3 method for obtaining dense4

structure (terrain, in our case) estimates with corresponding appearance online in real time

by using a single moving camera whose motion has been accurately estimated. We choose

to use this single-camera method because of the inaccuracy inherent in estimating distant

terrain using a stereo camera pair with a baseline that is attainable on the vehicle (see dis-

cussion in Chapter 3), while using multiple images as the camera moves through space

allows the RMFPP algorithm to attain expected range error that increases between linearly

and with the square root of the range.

Suppose a camera takes images i = 1, . . . , m of a rigid scene, where image 1 is the

reference view in which range will be estimated for each pixel. Then the homographies Hi

that transfer the i-th view to the reference view via a chosen reference plane are given by:

Hi = K

(

Ri −
1

d
TiN

T

)−1

K−1 ∈ R
3×3 , (2.1)

where (N ∈ R
3, d ∈ R

3) are the unit normal of the reference plane in the coordinate

system of the first camera and the perpendicular distance of the first viewpoint from the

reference plane, (Ri ∈ SO(3) , Ti ∈ R
3) are the rotation and translation from first camera

coordinate system to the i-th one, and K ∈ SL(3) is the constant intrinsic calibration matrix

of the camera.

Suppose that X ∈ R
3 is a point in space in the coordinate system of the first camera.

2The cost of incorporating measurements from a new image depends only on the number of pixels in the
image and does not depend on the number of images already seen.

3The algorithm expresses a cost function directly in terms of the image rather than depending on fea-
ture matching, and gradients of the cost function are calculated by linearization of the brightness constancy
constraint (see pro: [10], con: [11]).

4The algorithm provides a depth estimate for every pixel that is within a sufficiently textured region.
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Let pi = (xi, yi) for i = 1, .., m be the projection of X into each image, π(x, y, z) =

(x/z, y/z), and π∗(x, y) = (x, y, 1). The quantity

p1 − π ( Hi π
∗( pi ))

︸ ︷︷ ︸

pi
′

(2.2)

is called planar parallax, and is zero if X lies on the reference plane. The RMFPP algorithm

uses planar parallax, which is small for small movements if X is close to the reference

plane and increases with increased camera motion, to recursively estimate the quantity

γ = h/z for each pixel p1 in the reference image, where z is the range of X in the first

view and h = NT X + d is the signed perpendicular distance of X from the reference

plane. We then recover the range z using z = −d/(N T
K−1 π∗( p1 )− γ).

The RMFPP algorithm will be discussed in more detail in Chapter 3.

2.3 Motion Stamping

In order to use the RMFPP algorithm, we must first motion stamp each image, i.e. de-

termine the orientation and position of the camera when each image is captured using a

combination of (noisy) vehicle state data and (noisy) image feature tracks. We will discuss

a probabilistic approach to this problem in Chapter 4 and an analytic approach in Chapter

5, although we will ultimately conclude that the accuracy of these online algorithms has

thus far proven to be insufficient for our needs. While we continue to experiment with

alternative online motion-stamping methods, for the purposes of the experimental results

in this report we use an offline motion stamping method to showcase the performance of

the other components: we perform SIFT [12] feature tracking followed by Sparse Bundle

Adjustment (SBA) [13], where we initialize the camera orientations and positions using

the previous GPS/INS datapoints corrected by a constant coordinate transformation (see

Section 6.4). Using this offline method requires the separation of the experiment into three

8



pieces, but the vision high-level planner still directs the helicopter flight while it collects

image data and vehicle state data, the RMFPP algorithm is still run in better than real time

on hardware similar to that on the helicopter vision computer, and we successfully execute

the closer inspection and landing maneuvers using a premade elevation and appearance

map.

2.4 Modular Elevation and Appearance Map, and Land-

ing Site Quality

After it is filtered for outliers (see discussion in Chapter 3), the list of 3D terrain and

appearance points produced by the RMFPP algorithm is stored in a modular elevation and

appearance map. The map is represented as a 2D (x, y) grid with three layers at each of

multiple resolutions: terrain elevation z, terrain elevation variance (expected squared error)

1
w

, and appearance a. The grid is modular in the sense that it is broken into fixed-sized

rectangular blocks of real 2D space and that only blocks in which points have been observed

are present in the map. All blocks contain all resolutions, and higher resolutions in each

block contain more pixels in each layer than lower resolutions; for operations that require

only a single resolution, such as calculating landing quality and exporting maps, each map

block independently chooses its highest resolution where at least a fixed percentage of

pixels have known value (or its lowest resolution if none of its resolutions have enough

pixels with known value).

The modular elevation and appearance map is designed to be efficient and robust. To

constrain memory usage, only a fixed maximum number of blocks can be present; the

least recently accessed block is recycled when a new block is needed and no more blocks

are available. Because the scene is likely to change over long periods of time, blocks are

reinitialized when they are revisited after no updates for a fixed period of time. To reduce

9



the update and creation of blocks due to outliers, a fixed number of points from a given

RMFPP update must be contained in an existing or potential block for it to be updated or

created. To reduce the number of landing candidates generated by a suitable region, only

block centers are considered as possible landing sites. To eliminate the trade-off between

requiring large landing sites and having many mostly-unexplored blocks, and to allow more

dense possible landing sites, the landing quality score of a given block is calculated over

itself and a given radius of its neighbor blocks.

To exploit the expectation that a batch of 3D points from the RMFPP algorithm is from

a contiguous area, blocks are bidirectionally liked to their immediate neighbors as well as

being maintained in a hash table over their (x, y) centers, and all existing blocks that are

required for the given list of 3D terrain and appearance points produced by the RMFPP

algorithm are retrieved immediately upon determination of the points’ 2D bounding box.

Adding each 3D point to the map involves creating or locating the proper map block in the

prefetched grid and then updating the closest 2D map block pixel at each resolution, i.e.

optimally updating the pixel at each layer based on the existing elevation variance at the

pixel and the elevation variance for the new 3D point as provided by the RMFPP algorithm.

For maximum efficiency, landing quality scores for each map block are calculated

within the map module and the time required to update these scores for a batch of 3D

points from the RMFPP algorithm is linear in the number of points and in the size of the

points’ 2D bounding box. Let S be the set of 2D grid points with known values in a given

map block. The following statistics are maintained at each map block at each resolution:

the number of 2D grid points whose values are known and the total number of 2D points in

the block, from which the fraction of unknown points can be computed; a count of landing

target detections and a sum over target qualities as given by the target detector (optional,

not used to obtain the experimental results in this report), from which the average target

quality can be computed;
∑

i∈S wixi,
∑

i∈S wiyi,
∑

i∈S wizi,
∑

i∈S wixixi,
∑

i∈S wixiyi,
∑

i∈S wixizi,
∑

i∈S wiyiyi,
∑

i∈S wiyizi,
∑

i∈S wizizi, and
∑

i∈S wi, from which the best-
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fit plane and plane-fit error can be computed; and
∑

i∈S ai and
∑

i∈S aiai, from which the

average appearance and appearance variance can be computed. When a 2D pixel is updated

in a given block and resolution, its previous value is subtracted from, and its new value is

added to, each statistic that is maintained for that block and resolution.

To calculate the landing quality score for all modified blocks after an RMFPP map

update, an integral image [14] of the maintained statistics is formed over a rectangular

area suitably larger than the modified area of the map, and the statistics over a block and

its given radius of neighbors are calculated in constant time5 by adding and subtracting

appropriate elements of the integral image. The landing quality score for each modified

block (combined with its radius of neighbors) is a linear combination of the angle of the

best-fit plane from horizontal, the plane fit error, the percentage of grid squares in the block

with unknown value, the difference between the average appearance and a given desired

appearance, the appearance variance, and the average target quality (optional). A block

is considered to be a landing candidate if it is below given thresholds on each element of

the landing quality equation, and landing candidates are maintained in a priority queue so

that, all other things being equal, the better (lower ‘landing quality’ value) candidates are

considered first.

2.5 Target Detector

In case multiple safe landing sites are available, we want the vision system to be able to

recognize a distinctive target on the ground (see Figure 2.2). The target detector operates

directly on each RMFPP reference image, and the 3D output of the RMFPP algorithm

for that image is used to determine the 3D location of any detected landing target. As

discussed in Section 2.4, target detection counts are used as one of one of several features

for determining the quality of a landing site. Hence, target detection does not replace 3D

5The time required by this operation is independent of the block radius and the radius of the desired
landing site.
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Figure 2.2: View of the landing target from the air.

terrain reconstruction using the RMFPP algorithm.

The target detector first detects corners in the image as local maxima of a filter com-

posed of separable kernels, whose span resembles typical corners. It then determines

the homography h ∈ H, where H is a discrete set of homographies, that best trans-

forms the n points into points with integer coordinates according to the function f(h) =
∑n

i=1

(
exp 1

2σ2 d
2
i

)−1
for a given σ, where di is the distance of the i-th transformed point

from the closest integer coordinates. The best homography must meet or exceed a given

function value threshold τ to be considered a positive detection, so many of the homo-

graphies can be eliminated without computing the entire sum when the number of points

remaining to incorporate into the sum is less than the difference between the threshold and

the current value of the sum, or when the number of points remaining to incorporate into

the sum is less than the difference between the best final function value so far and the cur-

rent value of the sum (since each point can contribute at most 1 to the sum). Finally, if a

suitable best homography h has been found, the target detector determines the subset of the

n points that have transformed coordinates within a given distance q of integer coordinates;

if none of them are within this distance, the detector determines that no target is present,

otherwise it determines that a target is present at the median x and y image coordinates of

12



Figure 2.3: An experimental ROC curve of the landing target detector for different values
of τ .

the n points, with quality 1 − exp 1
2w2 (f(h)− q)2 for a given w (a lower ‘quality’ value

means a more confident detection).

The target detector was tested on images captured by both the Boeing and Berkeley ve-

hicles at multiple locations, with synthetic landing targets at random scales and orientations

inserted at random image locations. Figure 2.3 shows the ROC curve for different values

of τ , which gives a result of 80% true detections and 1% false detections on the test data.

2.6 High-level Planner

Concurrently with the above vision algorithms, the vision system executes a high-level

planner that operates directly on the vehicle state data. The default plan (when no landing

site candidates have been identified within a given maximum radius of the current location)

13



Spiral Descent 
(Top View)

Box Search 
(Top View)

Final Descent 
(Side View)

Figure 2.4: Plans for the high-level planner.

is an outwardly-expanding box search centered around the point, and at the altitude of,

where the planner is initially enabled (see Figure 2.4). When a landing site candidate is

identified that is within the given maximum radius, the planner enters a mode where it

directs a descending spiral toward a point a fixed distance directly over the candidate site.

The candidate site is examined whenever it is visible during the downward spiral, and all

other visible locations are also examined at closer range during this process. At any time

during the spiral, the vision system may determine that the site is unsuitable, or the human

operator may signal that the site is unsuitable, and the planner will switch to a different

candidate site (or return to the default box search plan if there are no nearby candidate

sites). Once the helicopter reaches a point a fixed distance directly over the candidate

site, the human operator may approve an autonomous landing, at which time the planner

directs a constant-speed vertical descent to a fixed lower altitude AGL, followed by a slower

constant-speed vertical descent to the ground.
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2.7 Conclusion

In this chapter, we have given an overview of the vision system used in the autonomous

mapping and landing project. We will give more details of the crucial pieces in later chap-

ters: the Recursive Multi-Frame Planar Parallax algorithm in Chapter 3, and the motion

stamping problem in Chapters 4 and 5. We will give results from the RMFPP algorithm,

both alone and as part of the system, in Chapter 7.
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Chapter 3

The Recursive Multi-Frame Planar

Parallax Algorithm

The content of this chapter is based on published work coauthored with Christopher Geyer,

Marci Meingast, and Shankar Sastry. This material is used with the permission of the

coauthors. c©2006 IEEE. Reprinted, with permission, from [1].
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3.A World Coordinates

Combining the equation for height above the reference plane in the frame of the reference

camera and the definition of γ, the point p = (x, y) in the reference image has z coordinate

in the frame of the reference camera

z = − d1

NT X ′ − γ
, (3.20)

where X ′ = K−1 π∗ (p). Back-projecting into 3-dimensional space, the point X and its

covariance in the frame of the reference camera cov (X) are given by:

X = − d1

NT X ′ − γ
X ′ (3.21)

cov (X) = J var (γ) JT (3.22)

where var (γ) =
1

ΣA

and J =
d1

(
NT X ′ − γ

)2 X ′. (3.23)

To construct an elevation map over multiple reference frames, the point and its covariance

can be transformed into the world coordinate system using the known location and orien-

tation of the reference camera.

33

Removed due to copyright restrictions. Refer to C. Geyer, T. Templeton, M. Meingast, and S. Sastry, 
"The recursive multi-frame planar parallax algorithm," in Proceedings of Third International 
Symposium on 3D Data Processing, Visualization and Transmission, 2006.



Chapter 4

Probabilistic Motion Stamping

4.1 Introduction

This chapter describes a motion filter that uses both (noisy) feature image locations from a

feature tracker and (noisy) attitude and position measurements, which makes it well-suited

for an Unmanned Aerial Vehicle (UAV) that is equipped with a camera and a GPS/INS

unit. It is designed for tight integration with a feature tracker and a map builder using the

Recursive Multi-Frame Planar Parallax algorithm. It provides an estimate of the current

attitude and position of the camera (motion stamp), relative to a fixed world coordinate

frame, for each captured image; this estimate is essential to the operation of the map builder.

It can also predict the locations of the previous features in the current frame, in order to

limit the feature tracker’s search space, as it evolves forward by an arbitrary time step to

the arrival time of the current frame.

4.2 Requirements

In these systems, image and GPS/INS data may not arrive simultaneously or with the same

frequencies, or even with consistent frequencies. It is therefore necessary to process the
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two types of measurements separately while still combining them into a single estimate of

the underlying system state. The state belief must be able to evolve forward by a variable

amount of time to accommodate various time differences between measurements. It is

highly desirable to provide predictions of the locations of the currently-tracked features

in the current frame so that the feature tracker can limit its search space for each feature,

shortening its runtime and increasing its accuracy. The filter also must provide an estimate

of the current position of the camera relative to a fixed coordinate frame for the map-builder.

4.3 Notation

The notation used in this chapter is relatively standard but it is defined here for complete-

ness.

Let the function π represent the projection of a pinhole camera, namely






u

v




 = π

















x

y

z

















=

f






x

y






z
(4.1)

where

[

x y z

]T

is a point in 3-dimensional Euclidean space,

[

u v

]T

is the point’s

projection onto the image plane, and f is the focal length of the camera. The resulting vec-

tor

[

u v

]T

is used interchangeably with its homogeneous representation

[

u v 1

]T

to write expressions such as Ay0 where A is a matrix with 3 columns and y0 is the projec-

tion of a point in space onto the image plane. Similarly, to find the perpendicular distance

between a point in space and the camera’s focal point, ρ = z = eT
3

[

x y z

]T

.

This chapter uses the axis-angle parameterization of rotations to represent angular ve-

locities. Define the skew-symmetric matrix ω̂ in so(3) corresponding to the vector ω =
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[

ω1 ω2 ω3

]T

by

ω̂ =









0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









. (4.2)

The matrix exponential of ω̂ is a rotation matrix in SO(3) and is easily computed using

Rodrigues’ formula

R(ω) = eω̂ = I +
ω̂

‖ω‖ sin(‖ω‖) +
ω̂2

‖ω‖2 (1− cos(‖ω‖)) . (4.3)

The inverse of Rodrigues’ formula is denoted by the function R−1 = LogSO(3). Note that

in the case of the system state ξ, ξ̂ is the state estimate not a skew-symmetric matrix.

Although the axis-angle parameterization is convenient because it requires only three

parameters to represent any rotation and because it makes it simple to scale the magnitude

of the corresponding rotation, it suffers from a singularity in its Jacobian. Therefore, this

chapter uses quaternions, which do not suffer from such a singularity, to represent attitudes.

Let q =

[

q1 q2 q3 q4

]T

be a quaternion. A unit quaternion equivalent to q is












qw

qx

qy

qz












=
1

‖q‖












q1

q2

q3

q4












(4.4)

and the corresponding rotation matrix is

R(q) =









1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw

2qxqy + 2qzqw 1− 2q2
x − 2q2

z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y









. (4.5)
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Figure 4.1: Model coordinate frames and transformations.

The inverse of this function results in a unit quaternion and is denoted by R−1. Note that

the corresponding functions for the axis-angle parameterization are also denoted by R and

R−1; the appropriate one to use is determined by whether the argument, in the case of R,

or the result, in the case of R−1, is an angular velocity in the axis-angle representation or

an attitude in the quaternion representation.

4.4 System Model

The motion of the system is defined with reference frames and transformations as illustrated

in Figure 4.1. Ω, T , ω, and V are the attitude, position, angular velocity, and linear velocity

of the camera with respect to its current configuration. Ωrel and T rel are the attitude and

position of the camera with respect to the GPS/INS unit. Ωwr and T wr are the attitude and

position of the vehicle (as measured at the GPS/INS unit) with respect to the global GPS

zero. The motion of the vehicle is modeled as Brownian motion in ω and V .

The location of the ith feature is represented by its projection yi
0 onto the initial image

plane and by its distance ρi from the focal point of the initial camera. The focal length f of

the camera is also included in the model and is modeled as a random walk if it can change
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over time.

The evolution of the model is given by

yi
0(t + ∆t) = yi

0(t) i = 1, . . . , N yi
0(0) = yi

0 (4.6)

ρi(t + ∆t) = ρi(t) i = 1, . . . , N ρi(0) = ρi
0 (4.7)

Ω(t + ∆t) = R−1(R(ω(t)∆t) R(Ω(t))) Ω(0) = R−1(I) (4.8)

T (t + ∆t) = R(ω(t)∆t) T (t) + V (t) ∆t T (0) = 0 (4.9)

ω(t + ∆t) = ω(t) + αω(t) ω(0) = ω0 (4.10)

V (t + ∆t) = V (t) + αV (t) V (0) = V 0 (4.11)

Ωwr(t + ∆t) = Ωwr(t) Ωwr(0) = Ωwr0 (4.12)

T wr(t + ∆t) = T wr(t) T wr(0) = T wr0 (4.13)

Ωrel(t + ∆t) = Ωrel(t) Ωrel(0) = Ωrel0 (4.14)

T rel(t + ∆t) = T rel(t) T rel(0) = T rel0 (4.15)

f(t + ∆t) = f(t) + αf(t) f(0) = f0 (4.16)

where αV (t) and αω(t) represent the Brownian motion in the velocities of the vehicle and

αf(t) represents a random walk in f .

The observable measurements of the system are the projection yi(t) of the ith feature

onto the current image plane (measured by the feature tracker) and the attitude Ωw(t) and

position T w(t) of vehicle with respect to the global GPS zero (measured by the GPS/INS

unit). These measurements are given by

yi(t) = π
(
R(Ω(t)) yi

0(t) ρi(t) + T (t)
)

+ ni(t) , i = 1, . . . , N (4.17)

Ωw(t) = R−1
(
R(Ωwr(t)) R(Ωrel(t)) R(Ω(t))−1 R(Ωrel(t))

−1)+ nΩw(t) (4.18)

T w(t) = R(Ωwr(t))
(
T rel(t)− R(Ωrel(t)) R(Ω(t))−1

A(t)
)

+ T wr(t) + nTw(t) ,

where A(t) , R(Ωrel(t))
−1

T rel(t) + T (t) (4.19)
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Figure 4.2: Iterated extended Kalman filter.

where ni(t), nΩw(t), and nTw(t) are additive Gaussian measurement noise.

This is an extension of the model in [29] to include attitude and position measurements

(Ωwr, T wr, Ωrel, T rel, Ωw, T w) and to allow evolution by an arbitrary nonnegative ∆t.

It also eliminates the special features used for scale in [29] and instead makes the system

observable using attitude and position measurements.

4.5 Implementation

The filter is implemented as an iterated extended Kalman filter in approximately 4000 lines

of C++ code. The extended Kalman filter is an extension of the extended Kalman filter

that allows multiple innovation iterations per evolution to achieve better convergence of

the nonlinear system. Figure 4.2 illustrates the operation of the iterated extended Kalman

filter, where in this case measurements are predicted both in the evolution step (to narrow

the search space of the feature tracker) and in the innovation step (to compare to the actual

measurements). For full descriptions and derivations of the extended Kalman filter and the

iterated extended Kalman filter, see [30] and [31].
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4.5.1 Measurements

The fact that feature and GPS/INS measurements are available at different times and with

different frequencies requires that the two sets of measurements cannot be evolved and

innovated together. Instead, there is one set of evolution and innovation routines for feature

measurements and another for GPS/INS measurements. These routines must be run in

pairs–a feature innovation must follow a feature evolution and an attitude and position

innovation must follow an attitude and position evolution. Separating the evolution from

the innovation allows the feature tracker to receive a new frame, evolve the filter to the

time when the frame arrived and get predicted feature locations for that frame, locate the

features using the predictions to limit its search, and finally innovate the filter using the

observed projections of the features onto the image plane.

4.5.2 Appearing and Disappearing Features

Because features appear and disappear due to motion, nonvisible features must be removed

from the model and new features must be added. For reasons of practicality, a feature

that disappears and then later reappears is treated as two different features. Removing a

feature is trivial (it only involves removing the feature from the state estimate), but adding

a new feature is problematic because its initial distance from the focal point of the camera

is unknown. To get around this problem, as in [29] each new feature is initially assigned

an arbitrary distance ρi with large variance and placed in its own subfilter so that its large

distance variance does not affect the main filter. A new feature is inserted into the main

filter from its subfilter when its depth variance becomes comparable to the depth variance

of the features in the main filter (implemented as when its depth variance becomes less

than or equal to the mean depth variance of the features in the main filter or when the depth

variance becomes less than or equal to a fixed threshold).
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4.5.3 Initialization

The main filter state

ξ̂ =

[

y1T
0 ρ1 . . . yNT

0 ρN
Ω

T T T ωT V T
Ω

T
wr T T

wr Ω
T
rel T T

rel f

]T

(4.20)

is initialized using the measurements yi(0) for yi
0(0); arbitrary distances for ρi; R−1(I)

for Ω(0); 0 for T (0), ω(0), and V (0); the most recent GPS/INS reading for Ωwr(0) and

T wr(0); a given estimate of Ωrel and T rel for Ωrel(0) and T rel(0) (determined by the ve-

hicle); and a given estimate of f for f(0) (determined by the camera). The main filter

covariance P is initialized to be block diagonal with the covariance of the blocks corre-

sponding to the yi
0 determined by analysis of the feature tracker, a relatively large number

for the blocks corresponding to the ρi, 0 for the blocks corresponding to Ω and T , a rel-

atively large number on the diagonal for the blocks corresponding to ω and V , a block

corresponding to Ωwr and T wr that is given by analysis of GPS/INS measurements, a rel-

atively small number on the diagonal for the blocks corresponding to Ωrel and T rel, and a

portion such as 0.1 of f(0) as the initial variance of f .

No subfilters are created during initialization, and no features are allowed to move from

a subfilter to the main filter until after the first 10 sets of feature evolutions and innovations

(of the main filter) to allow the main filter to stabilize.

4.5.4 Main Filter

The system model in equations 4.6-4.19 above can be written in summary form as

ξ(t + ∆t) = f(ξ(t)) + w(t) w(t) ∼ N (0, Σw) (4.21)





yfeat(t)

ybody(t)




 =






hfeat(ξ(t))

hbody(ξ(t))




 + n(t) n(t) ∼ N (0, Σn) (4.22)
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where yfeat(t) is the yi(t) and ybody(t) is Ωw(t) and T w(t).

As in [29], modified to iterate the innovation (IEKF) as in [31], the main filter imple-

ments the following equations:

Evolution:

ξ̂(t + ∆t|t) = f
(

ξ̂(t|t)
)

(4.23)

P(t + ∆t|t) = F(t) P(t|t)F
T (t) + Σw (4.24)

Innovation:

ξ̂(t + ∆t|t + ∆t) = ξ̂(t + ∆t|t) + L(t + ∆t)
(

y(t + ∆t)− h
(

ξ̂(t + ∆t|t)
))

−H

(

ξ̂(t + ∆t|t)− ξ̂(t + ∆t|t + ∆t)
)

(4.25)

P(t + ∆t|t + ∆t) = Γ(t + ∆t) P(t + ∆t|t) ΓT (t + ∆t)

+L(t + ∆t) Σn(t + ∆t) LT (t + ∆t) (4.26)

For the first iteration of the innovation, ξ̂(t + ∆t|t + ∆t) is set equal to ξ̂(t + ∆t|t).

Gain:

Γ(t + ∆t)
.
= I− L(t + ∆t) H(t + ∆t) (4.27)

L(t + ∆t)
.
= P(t + ∆t|t) HT (t + ∆t) Λ−1(t + ∆t) (4.28)

Λ(t + ∆t)
.
= H(t + ∆t) P(t + ∆t|t) HT (t + ∆t) + Σn(t + ∆t) (4.29)

Linearization:

F(t)
.
=

∂f

∂ξ

(

ξ̂(t|t)
)

(4.30)

H(t + ∆t)
.
=

∂h

∂ξ

(

ξ̂(t + ∆t|t + ∆t)
)

(4.31)
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Note that f and y in the above equations represent ffeat(t) and yfeat(t) when a fea-

ture measurement is available, and fbody(t) and ybody(t) when a GPS/INS measurement is

available.

4.5.5 Subfilters

A subfilter is created when a new feature appears at time τ and its state ξ̂τ =

[

yiT
τ ρi

τ

]T

is initialized by its projection onto the current image plane (yi
τ ) and an arbitrary depth (ρi

τ ).

Its initial covariance Pτ is block diagonal with the block corresponding to yi
τ determined

by analysis of the feature tracker, and with the variance of ρi
τ a relatively large number.

Each subfilter also stores (but never changes except during recentering) the attitude and

position estimate from the main filter for the time at which the subfilter is initialized. These

stored estimates of Ω and T at time τ are Ω(τ |τ) and T (τ |τ).

As in [29], a subfilter implements the following equations:

Measurement:

yi(t) = π
(
R(Ω(t|t)) R(Ω(τ |τ))−1 (

yi
τ (t) ρi

τ (t)− T (τ |τ)
)

+ T (t|t)
)

+ ni(t) (4.32)

where ni(t) is additive Gaussian measurement noise.

Evolution:

ξ̂
i

τ (t + ∆t|t) = ξ̂
i

τ (t|t) (4.33)

Pτ (t + ∆t|t) = Pτ (t|t) + Σw(t) (4.34)

for t > τ .

The subfilter innovation equations are identical to the main filter innovation equations

using the above subfilter measurement equation.

When the variance of ρi
τ decreases to less than or equal to the mean distance variance
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of all features in the main filter or when the variance of ρi
τ decreases to less than or equal to

a fixed threshold, the subfilter is removed, the feature is projected back into the coordinate

frame of the initial camera using

X i = R(−Ω(τ |τ))−1
(
yi

τ (t) ρi
τ (t)− T (τ |τ)

)
(4.35)

yi
0(t) = π

(
X i
)

(4.36)

ρi
0(t) = eT

3 X i, (4.37)

and the feature state and covariance are inserted into the main filter. Initially the covariance

of the feature with the rest of the main filter state is zero.

Subfilters are not evolved or innovated for (GPS/INS) attitude and position measure-

ment data because they do not include any reference frame state.

4.5.6 Recentering

To reduce feature uncertainty in the main filter, we recenter the reference camera coordinate

system when we have no features from the image captured at the reference camera location

remaining in the main filter, subject to a given minimum number of feature innovations

between recenterings.
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We first transform the main filter into the new coordinate system:

yi
0(t|t)′ = π

(
R(Ω(t|t)) yi

0(t|t) ρi(t|t) + T (t|t)
)

, i = 1, . . . , N (4.38)

ρi(t|t)′ = eT
3

(
R(Ω(t|t)) yi

0(t|t) ρi(t|t) + T (t|t)
)

, i = 1, . . . , N (4.39)

Ω(t|t)′ = R−1(I) (4.40)

T (t|t)′ = 0 (4.41)

Ωwr(t|t)′ = R−1
(
R(Ωwr(t|t)) R(Ωrel(t|t)) R(Ω(t|t))−1 R(Ωrel(t|t))−1) (4.42)

T wr(t|t)′ = R(Ωwr(t|t))
(
T rel(t|t)−R(Ωrel(t|t))R(Ω(t|t))−1

A(t|t)
)

+ T wr(t|t) ,

where A(t|t) , R(Ωrel(t|t))−1
T rel(t|t) + T (t|t) . (4.43)

The covariance of the main filter is updated using the Jacobian of this transformation.

We must also correct the camera attitude and position estimate with which each subfilter

was initialized by the same change in coordinate system:

Ω(τ |τ)′ = R−1
(
R(Ω(τ |τ)) R(Ω(t|t))−1) (4.44)

T (τ |τ)′ = T (τ |τ)− R(Ω(τ |τ)) R(Ω(t|t))−1
T (t|t) . (4.45)

Note that no covariance needs to be updated for this transformation, since the covariance

of Ω(τ |τ) and T (τ |τ) is not maintained in the subfilter.

4.5.7 Tuning

Σw in the equations above is a tuning parameter. It is chosen to be block diagonal, with

zeros corresponding to Ω(t) and T (t) so that the system is a perfect integrator. Σw allows

control over the smoothness of the estimate and depends on the amount of noise in the

measurement data. In practice, Σw is chosen for a unit evolution ∆t = 1 and is scaled by

the current ∆t during the evolution.
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Figure 4.3: Synthetic experiment: screw trajectory (noiseless trajectory blue, filtered tra-
jectory red).

Figure 4.4: Synthetic experiment: first frame (noiseless features blue, filtered features red).
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Figure 4.5: Synthetic experiment: last frame (noiseless features blue, filtered features red).

4.6 Results

Figures 4.3-4.5 show the result of running the filter on an interleaved sequence of 50 fea-

ture measurements and 50 GPS/INS measurements. The data is synthetic, which allows a

comparison to ground truth, with the input to the filter corrupted by additive Gaussian noise

with standard deviation 0.01. Figure 4.3 shows the vehicle trajectory, a shallow screw mo-

tion in three dimensions. There are 85 features per frame, and the input is constructed such

that all features remain in the camera’s field of view for the entire motion. Figures 4.4 and

4.5 show the camera image plane with the noiseless (before corruption) features in blue

and the filtered features (the output of the filter) in red. Figure 4.4 shows the first usable

frame in the sequence (the first frame is used for initialization) and Figure 4.5 shows the

last frame in the sequence. Focal length filtering is not used for this sequence because the

focal length is not changing over time.

Although the filtered trajectory in Figure 4.3 is not as smooth as the noiseless trajectory,
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it does a reasonable job of following the motion considering that the input attitude and

position are corrupted by noise with standard deviation 0.01. From Figures 4.4 and 4.5,

the results appear to be particularly sensitive to radial noise, which is not surprising since

radial noise is highly nonlinear and the filter optimizes based on repeated linearizations.

Overall, the results are acceptable but not ideal.

4.7 Conclusion

This chapter has described a filter that integrates feature measurements from a feature

tracker with attitude and position measurements from an onboard GPS/INS unit, taking

into account all of the necessary coordinate frames and the transformations between them.

The filter is also able to evolve the state by an arbitrary nonnegative time and to predict

the locations of features in the current frame. This has yielded a filter with acceptable per-

formance, although it is not yet suitably accurate for the adverse conditions of the aerial

mapping and landing problem.
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Chapter 5

Analytical Motion Stamping

5.1 Introduction

After experimenting with the probabilistic method discussed in the previous chapter, we

described an analytical approach. Here we outline, and analyze the robustness of, this

analytical motion-stamping algorithm.

The method discussed in this chapter assumes that the intrinsic calibration, i.e. the focal

length and center of projection (and other parameters such as skew and radial distortion if

they are necessary), of the camera is known. It also assumes that all sensors are colocated

in both location and orientation; more realistically, it assumes that all sensors have been

calibrated and that their measurements have been corrected to a common reference frame.

These calibration algorithms are discussed in Section 6.4.

The remainder of this chapter is organized as follows: We begin by describing the

analytical motion stamping algorithm in Section 5.2. Section 5.3 provides a sensitivity

analysis and Section 5.4 discusses results on realistic synthetic data. Finally, Section 5.5

concludes.
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5.2 Algorithm

To fulfill the RMFPP assumption that the motion is known, we must motion stamp each im-

age (determine the world location and orientation of the camera when it was captured). Al-

though we have location and orientation measurements available from helicopter GPS/INS

sensors, they are noisy (particularly the location measurements, which are based on GPS)

and do not in general correspond to times when images are captured. They do, however,

provide absolute measurements of motion that, intuitively, we can use to correct for drift

due to integrating the relative motion information provided by the camera over time.

Because the helicopter GPS/INS sensors are noisy, we (sparsely) track distinctive fea-

tures between images and use these tracks to improve the accuracy of the online motion

estimation. Although feature tracks do not give full orientation and location information,

they do give very accurate two-dimensional projections of relative orientation and location.

We also assume that the helicopter motion is smooth. Note that the system must run in real

time, but that it may delay all frames by a constant amount of time to use ‘future’ infor-

mation to estimate the location and orientation of the camera when an image was captured;

this only results in a landing site being detected slightly later than it otherwise would be.

The online motion estimation algorithm first computes an initial value for the camera

orientation, then combines a polynomial fit on the helicopter location measurements with

information from feature tracks using least squares optimization, and finishes with a non-

linear refinement.

5.2.1 Orientation

Because the orientation measurements given by the helicopter sensors are relatively noise-

less, because the relative orientation of the camera is independent of its relative position,

and because the location estimation requires it, the camera orientation is estimated first.
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The orientation estimate is the R that minimizes

∑

i

wi||R− R̂i||F (5.1)

as in [32], where the R̂i are preliminary estimates of R from feature tracks and from inter-

polation of calibrated GPS/INS vehicle orientation measurements, and the wi are weights

that decrease with increasing time between when the current image was captured and when

the data used to estimate R̂i was obtained (they can also adjust the overall weight between

the two sources of R̂i estimates). The minimum value is achieved when R is the polar factor

of the polar decomposition [33] of

Q =
∑

i

wiR̂i (5.2)

provided that Q has positive determinant [32].

Each feature track R̂i is obtained by estimating an essential matrix E (assuming that the

scene is nonplanar) and a homography H (assuming that the scene is planar) between the

current image and a past image, computing ∆R̂i from whichever of E and H is a better fit,

and combining ∆R̂i with the final orientation estimate of the past image. The procedures

for estimating E and H from feature correspondences and for computing ∆R̂i using these

estimates are beyond the scope of this report; see [34] for details.

Each GPS/INS R̂i is obtained by interpolating calibrated vehicle orientation measure-

ments from before and after the current image was captured:

R̂i =
(
Ri2Ri1

T
) t−ti1

ti2−ti1 Ri1 (5.3)

where t is the time of the current frame, Ri1 and Ri2 are GPS/INS orientation measurements

at times ti1 and ti2, and ti1 ≤ t ≤ ti2.

51



5.2.2 Location

The camera location estimate is a least squares estimate that combines a weighted polyno-

mial fit of the calibrated vehicle locations with additional equations based on feature cor-

respondences. Let t be the time of the image that we are currently trying to motion stamp,

let {(ti, Ti)} be calibrated vehicle location measurements both before and after time t, and

define ∆ti = ti − t. To calculate a k-th order polynomial fit on the calibrated vehicle

location measurements, we require linear equations of the form









∆tki · · · ∆t1i 1 0 · · · 0 0 0 · · · 0 0

0 · · · 0 0 ∆tki · · · ∆t1i 1 0 · · · 0 0

0 · · · 0 0 0 · · · 0 0 ∆tki · · · ∆t1i 1















































α1k

...

α11

α10

α2k

...

α21

α20

α3k

...

α31

α30







































= Ti (5.4)

where αpq is the coefficient of the qth order term in the polynomial fit for the p-th dimension

of the location. In practice we normalize each row of this equation by the norm of its row

in the left-hand matrix or by a small constant, whichever is larger, and scale by exp 1
2

∆t2
i

σ2
1

to

regularize the system and then give relatively more weight to measurements that are closer

in time to t. Note that this fit is constructed so that the camera location at time t (the location

of interest) is trivially extracted from the parameter vector by T ←
[

α10 α20 α30

]T

.
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Consider a feature i that is visible in the current image and in a past image j that has

been previously motion stamped. Let xi =

[

xi yi 1

]

and xij =

[

xij yij 1

]

be the calibrated homogeneous locations of the feature in the current and j-th images re-

spectively. The locations of the feature in the three-dimensional coordinate frames of the

current and j-th cameras are λixi and λijxij respectively for some λi and λij . Define the

relative orientation and location of the current and j-th camera reference frames by Rd, Td

such that Rd (λixi) + Td = λijxij. Then Rd = Rj
T
R and Td = Rj

T (T − Tj) where R, T

is the orientation and location of the current frame and Rj, Tj is the orientation and location

of the j-th frame. We can eliminate one unknown from Rd (λixi) + Td = λijxij by taking

the cross product with xij on both sides; then λi (xij × Rdxi) + xij × Td = 0. Substitut-

ing for Rd, Td gives λi

(
xij × Rj

T
Rxi

)
+ xij × Rj

T T = xij × Rj
T Tj . Note that the only

unknowns are T and λi. We can write this equation as

[

xij × Rj
T xij × Rj

T
Rxi

]












α10

α20

α30

λi












= xij × Rj
T Tj (5.5)

where we use the identity T =

[

α10 α20 α30

]T

. Note that the three equations given

above are not independent, so we only use the first two rows. We normalize each row

by the norm of its row in the left-hand matrix and then scale by ρ
(

1− exp 1
2

∆t2

σ2
2

)

, where

∆t = tj − t and tj is the time of the j-th frame; this regularizes the system, weights

equations for frames that are farther apart in time more heavily, and weights the feature

error relative to the polynomial fit error.

By stacking many equations corresponding to calibrated vehicle locations (polynomial

fit) and many equations corresponding to feature pairs, we obtain a least squares problem

in {αpq} and {λi}. In practice we use all helicopter location measurements between Mp
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frames before the current frame and Mf frames after the current frame (we delay RMFPP

reconstruction by Mf frames). We use the N features in the current frame that have been

tracked the longest and include equations of the above form for all of the past Mp images

in which they appear (this allows a more accurate estimate of each λi and also allows us

to introduce the fewest additional variables for a given number of feature correspondence

equations). Note that λixi gives the location of the i-th feature in the reference frame of

the current camera; using these points and the motion stamp for the current image, we can

estimate the average height of the terrain for the RMFPP reference plane.

5.2.3 Nonlinear Refinement

Since R and T have been estimated separately, we perform a final nonlinear optimiza-

tion using Sparse Bundle Adjustment (SBA) [13]. This is a local method based on the

Levenberg-Marquardt algorithm that minimizes ||y − f(x)|| over x, where x is a vector

of the locations of all features in 3D space as well as the camera location and orientation

for the current image (note that in general SBA can optimize over the camera locations

and orientations for an arbitrary number of frames), y is a vector of all of the feature mea-

surements in the last Mp images and in the current image, and the function f projects the

3D features into the last Mp images and the current image using all camera locations and

orientations and the camera intrinsic calibration K. Note that the positions and orientations

of the last Mp images are held fixed; only the location and orientation of the current image

is allowed to vary.

5.2.4 Remark

Since the first frame that the motion estimation processes will not have any previous motion

stamped frames it uses only GPS/INS R̂i and performs only the polynomial fit on this image.

It subsequently uses this motion stamp (and then motion stamps derived from this motion
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stamp) to calculate new motion estimates. However, it quickly converges to more accurate

results as this initial estimate becomes less influential. We turn on the RMFPP after the

motion estimation has converged.

5.3 Robustness

In this section we examine the robustness of the least-squares problem of minimizing

||Āx− b||2 in the location estimate above. In particular, we consider worst-case minimiza-

tion over additive noise to elements of Ā. A comparison of maxA∈Aρ
||AxLS − b||2 (where

xLS is the least-squares solution) and minx maxA∈Aρ
||Ax − b||2 for different amounts of

noise ρ indicates the sensitivity of the solution to the additive noise in Ā.

Consider minx maxA∈Aρ
||Ax − b||2 where Aρ =

{
Ā + ∆| − vij (ρ) ≤ δij ≤ vij (ρ)

}
.

Then maxA∈Aρ
||AxLS−b||2 is equal to |||ĀxLS−b|+V|xLS|||2 and minx maxA∈Aρ

||Ax−

b||2 is equal to the square root of minx,y,w,t t s.t. −y � Āx− b � y, −w � x � w, and

||y + V (ρ) w||2 ≤ t. The latter is a Second-Order Cone Problem (SOCP), which we solve

using the YALMIP [35] optimization framework and the SDPT3 [36] solver.

5.3.1 Error In Position Measurement Time

We first consider the robustness of the solution to error in the time at which the GPS/INS

position is measured. Since our vision system periodically receives this data over an Eth-

ernet connection and the clocks on the different computers are not synchronized, our pro-

gram timestamps the data with the time at which it receives it (after an unknown delay on

the other computer, transmission time, and thread- and process-switching time). We model

this by an error in ∆ti in Equation 5.4 of at most ρ (and hence an error in ∆tj
i of at most

ρj). In general this is an approximation that overestimates the sensitivity of the solution,

but in this case we are using a linear fit in Ti so there is only one power of ∆tj
i .

Figure 5.1 shows the mean and standard deviation of the solutions to maxA∈Aρ
||AxLS−
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Figure 5.1: Mean (a) and standard deviation (b) of minx ||Āx − b||2 (blue),
maxA∈Aρ

||AxLS − b||2 (red), and minx maxA∈Aρ
||Ax − b||2 (green) for different magni-

tudes of error in the times of the GPS/INS position measurements. Note that minx ||Āx−
b||2 is independent of the maximum error ρ; it is included for comparison.

b||2 and minx maxA∈Aρ
||Ax−b||2 for different values of ρ using 20 different Ā, b, and xLS

obtained by running the motion stamp algorithm on realistic synthetic images and GPS/INS

location and orientation data. The two curves for the mean are similar through ρ ≈ 0.01,

so the method is robust to variability in delay up to ∆ti ≈ 0.01 second.

5.3.2 Error In Feature Equations

We now consider the robustness of the solution to error in the initial orientation estimate R,

the past orientation estimates Rj, the feature measurements in the current image xi, and the

feature measurements in the past images xij. This is modeled by an error of at most ρ in all

elements of Ā shown in Equation 5.5. In general this is an approximation that overestimates

the sensitivity of the solution since the same terms appear in different elements of Ā and

since R and Rj are constrained to be rotation matrices.

Figure 5.2 shows the mean and standard deviation of the solutions to maxA∈Aρ
||AxLS−

b||2 and minx maxA∈Aρ
||Ax − b||2 for different values of ρ using the same data as in the

section above. There is no dramatic difference between the two curves like there was in
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Figure 5.2: Mean (a) and standard deviation (b) of minx ||Āx − b||2 (blue),
maxA∈Aρ

||AxLS − b||2 (red), and minx maxA∈Aρ
||Ax − b||2 (green) for different mag-

nitudes of error in the feature equations. Note that minx ||Āx − b||2 is independent of the
maximum error ρ; it is included for comparison.

the last section; the solution is robust to error in the feature equations. This is due to

the fact that the feature equations only provide relative information (it is possible for the

noisy elements to be consistent with the same solution), the fact that there are many such

equations providing similar information, and the fact that the motion is also ‘constrained’

by the polynomial fit.

5.4 Results

We test the algorithm on a realistic synthetic sequence of images and GPS/INS data, with

zero-mean Gaussian noise with standard deviation 3.0 meters added to Ti and a quaternion

with mean

[

1 0 0 0

]T

and standard deviation

[

0.01 0.01 0.01 0.01

]T

multi-

plied onto Ri. The images were rendered from satellite imagery and Digital Terrain Eleva-

tion Data (DTED) elevation data (see sample rendered image in Figure 7.1) at 2.5 fps and

the synthetic GPS/INS data arrived at 33.3 Hz. The system, including feature tracking and

RMFPP, ran in real time on an Intel Pentium M 1.6 GHz processor.

Figure 5.3 shows the true (before noise was added) and estimated trajectory, altitude,
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Figure 5.3: True (blue) and estimated (red) trajectory (a), altitude (b, upper), and average
terrain height (b, lower) using realistic synthetic imagery and GPS/INS data with zero-
mean Gaussian noise with 3.0 meters standard deviation added to Ti and a quaternion with
mean [1, 0, 0, 0]T and standard deviation [0.01, 0.01, 0.01, 0.01]T multiplied onto Ri.

and average terrain height. Note that the estimated trajectory drifts from the true trajectory,

but this is expected because of the high weight put on the feature equations compared to

the polynomial (linear in this case) fit in GPS/INS position due to the large amount of noise

in the GPS/INS measurements. The altitude and average terrain height remain within 100

meters of their true values. The algorithm tends to maintain the altitude at a constant height

above the terrain, evidenced by the the two estimated altitudes being close to parallel. As

desired, the estimates are locally consistent even though they drift over time.

5.5 Conclusion

We have motivated, described, and analyzed an analytical algorithm for determining the

location and orientation of a camera using images and noisy GPS/INS location data that

runs together with RMFPP in real time. We have shown that the trajectory that it estimates

on noisy synthetic data drifts but is locally consistent, although its accuracy is not sufficient

for the Recursive Multi-Frame Planar Parallax algorithm in practice.
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Chapter 6

Experimental Platform

The content of Sections 6.2-6.3 is based on unpublished work coauthored with David Shim,

Christopher Geyer, and Shankar Sastry [2]. This material is used with the permission of

the coauthors.

6.1 Introduction

Although the final platform target for the aerial mapping landing system was the Boeing

Maverick, a modified Robinson R22 (a full-sized 2-passenger helicopter), with vehicle

communication using the Open Control Platform (OCP), the Boeing system was largely a

black box. In this chapter we discuss the control and architecture of the Berkeley surrogate

platform, as well as the sensor calibration that was essential to operation on both platforms.

6.2 Vehicle Setup

The testbed used in this research is based on an electrically powered RC helicopter, whose

detailed specifications are given in the Table 6.1. The DC brushless motor with high-

capacity Lithium-polymer batteries allows more than 10 minutes of continuous flight with

59



Base platform Electric Helicopter (Maxi-Joker 2)
Dimensions 0.26 m (W) x 2.2 m (L) x 0.41 m (H)
Rotor Diameter 1.8 m
Weight 4.5 kg (no onboard electronics)

7.5 kg (fully instrumented)
Powerplant Actro 32-4 motor (1740W max at 75A)

Lithium-Ion-Polymer (10S4P; 40V 8Ah)
Operation Time 15 minutes
Avionics Navigation: DGPS-aided INS

GPS: NovAtel OEM4-MillenRT2
IMU: Inertial Science ISIS-IMU
Flight Computer: PC104 Pentium III

700MHz
Communication: IEEE 802.11b with

RS-232 MUX
Vision Computer: PC104 Pentium M

1.6GHz
Autonomy Waypoint navigation with automatic VTOL

Position-tracking servo mode
MPC-enabled dynamic path planning with

collision avoidance
Stability-augmentation system

Table 6.1: Specification of the UAV testbed. Courtesy of David Shim.

the ease of fully automatic start-stop operation. The onboard components are designed

and integrated with emphasis on weight reduction for longer flight time, reliability, and

maneuverability. The vehicle is controlled by a PC104 form factor Pentium III 700MHz

CPU with a custom servo interfacing board, an inertial measurement unit (IMU), a high-

precision carrier-phase differential global positioning system, and an IEEE 802.11b device

(see Figure 6.1). The flight control system communicates with the ground station over the

wireless channel for receiving commands and sending the navigation status and system

vital signs such as the battery level and the health of onboard components.

The vision-based terrain mapping and analysis system is implemented on a PC104 form

factor Pentium M computer running Linux. The CPU is interfaced with a 2GB Compact

Flash drive, a Firewire board, and Personal Computer Memory Card International Asso-

ciation (PCMCIA) wireless Ethernet. As shown in Figure 1.1, the vision computer is in-
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Figure 6.1: System architecture of the UAV testbed for vision-based landing and mapping.
Courtesy of David Shim.
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stalled in the nose of the vehicle in a dedicated aluminum enclosure for modularity and

EMI shielding. A Firewire camera is installed in a forward- and downward-looking di-

rection to capture the ground ahead of and below the vehicle. The vision system receives

vehicle state data from, and sends trajectory commands to, the flight computer through the

RS-232 serial interface.

As described in Section 2.6, the vision system requests appropriate flight patterns as

it performs real-time terrain mapping and analysis at varying resolutions. The flight con-

trol system is responsible for guiding the vehicle through the requested waypoints with

an acceptable accuracy. At a constant rate of 10Hz, the flight control system reports to

the vision system the time-stamped navigation status such as position and attitude/heading,

which are necessary to reconstruct the terrain with respect to an inertial reference frame

(see Figure 6.1).

6.3 Vehicle Control

The flight control system consists of two hierarchical layers: the trajectory generator and

the tracking controller. The trajectory generation is based on model predictive control

(MPC) [37], which is solved in real time to find a sequence of control inputs that minimizes

an appropriate cost function.

6.3.1 MPC-based Trajectory Generation

In [37, 38, 39], it was shown that model predictive control using penalty functions for state

constraints and explicit input saturation [40] is a viable approach to address the guidance

and control problems of UAVs at a reasonable computation load for real-time operation.

In [38], an MPC-based control system was shown to have outstanding tracking control in

the presence of coupled dynamic modes and substantial model mismatch. It has also been

demonstrated that MPC-based optimization could be formulated to implement a higher
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level of autonomy, such as real-time aerial collision avoidance [37], and obstacle avoidance

in urban environment using onboard laser scanner [39]. In [41], an MPC-based trajectory

planner is implemented as the feedforward control part of a two-degree-of-freedom con-

trol system. Here, as in [41], we will use a full vehicle kinodynamic model with input

saturation.

Suppose we are given a time invariant nonlinear dynamic system

x(k + 1) = f(x(k) , u(k)) , (6.1)

where x ∈ X ⊂ R
nx and u ∈ U ⊂ R

nu . The optimal control sequence over the finite

receding horizon N is found by solving the nonlinear programming problem

V (x, k, u) =
k+N−1∑

i=k

L(x(i), u(i) + F (x(k + N)), (6.2)

where L is a positive definite cost function term and F is the terminal cost. When applied

to the vision-based landing problem, L contains a term that penalizes the deviation from

the desired trajectory. Suppose u∗(x, k) is the optimal control sequence that minimizes

V (x, k, u) such that V ∗(x, k) = V (x, k, u∗(x, k)), where V ∗(x, k) ≤ V (x, k, u), ∀u ∈

U. With u∗(k), one can find x∗(k), k = i, · · · , i + N − 1 by solving recursively the

given nonlinear dynamics with x(i) = x0(i) as the initial condition. We propose to use the

control law

u(k) = u∗(k) + K(x∗(k)− x(k)). (6.3)

For the feedback control law K, a control strategy similar to that in [42] is implemented.

If the dynamic model used for solving the optimization problem perfectly matches the

actual dynamics and the initial condition without any disturbance, there should not be any

tracking error. In the real world, such an assumption cannot be satisfied. In this setup,

with a tracking feedback controller in the feedback loop, the system can track the given
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Figure 6.2: Flight control system architecture with MPC-based trajectory generator. Cour-
tesy of David Shim.

trajectory reliably in the presence of disturbance or modeling error. The architecture of the

proposed flight control system is given in Figure 6.2.

6.3.2 Flight Control Strategy for Autonomous Vision-based Landing

For automatic surveying, the control system should be able to guide the vehicle through the

requested waypoints with minimal deviation while keeping the vehicle well within its dy-

namic performance boundary. The flight control should not induce any excessive vibration

or rapid turns that may cause motion blur in the camera image.

The vision system requests one of three types of flight patterns as described in Figure

2.4. During the box search for coarse DEM construction, the vision system sends waypoints

that are the vertices of piecewise linear segments. The vehicle is expected to fly along
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the linear segments with minimal deviation while making bank-to-turn maneuvers around

each vertex at a constant horizontal cruise speed and altitude. During the spiral descent,

the vision unit sends a series of waypoints with much finer resolution. In final descent

mode, the vision unit sends the landing coordinates to the flight control system, which is

solely responsible for the stability and tracking accuracy of the descent maneuver until

touchdown. Since helicopters go through substantial perturbation in the dynamics due to

the ground effect, wind gusts, and reaction force from the ground, we believe it is best to

leave the landing task to the flight control system, which is fine-tuned for the host vehicle.

In order to maintain a given trajectory under environmental disturbance, as opposed to

heading straight toward a specific waypoint regardless of the current position, one has to

know the previous waypoint1. Additionally, in order to achieve a smooth transition between

waypoint requests with a constant cruise speed, one has to know the next waypoint a priori

while the vehicle is approaching the current waypoint so that the flight control system can

prepare for the bank-to-turn maneuver without any abrupt changes of heading or cruise

velocity. The planning around a waypoint from the current location into a limited portion

of future time perfectly fits the fundamental idea of MPC’s receding horizon framework. To

allow the vehicle flight mode described above, we use the following data structure, which

specifies flight mode, past/current/future waypoints (see Figure 6.3), horizontal/vertical

speed limit, heading rate limit, and a time tag, for communication from the vision computer

to the flight computer over a wired RS-232 channel.

typedef struct {

double GPSTime; // time tag [sec]

// latitude, longitude, height

double PastWP[3]; // (rad,rad,m)

double CurrentWP[3]; // (rad,rad,m)

double NextWP[3]; // (rad,rad,m)

1In our implementation, this point is not required to have been the actual previous waypoint; it is merely
a point that defines a vector of approach to the current waypoint.
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Figure 6.3: Three-point waypoint specification and MPC-based trajectory generation.
Courtesy of David Shim.
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// cruise speed past WP to current WP

float Vcruise1; // [m/s]

// cruise speed current WP to next WP

float Vcruise2; // [m/s]

// reference vertical velocity

float Vvert; // [m/s]

// reference yaw rate

float yaw_rate; // [rad/s]

// ABORT(0), BOX_SEARCH(1),

// SPIRAL_SEARCH(2), LANDING(3)...

WORD FlightMode;

WORD DataChecksum;

} MESSAGEBODY, *ptMESSAGEBODY;

6.3.3 Results

In order to build the terrain map or investigate a candidate landing site, the vision computer

commands the vehicle to perform a box search or closer inspection spiral by requesting

waypoints following the format defined above. The actual flight trajectory and other nav-

igation states are presented in Figure 6.4. The vehicle initially follows the waypoints in a

box pattern, and then, upon discovering a possible landing zone, the vehicle is commanded

to fly in a spiral pattern at a very low velocity. After completing the closer inspection, the

vision computer commands the vehicle to abort the spiral and resume the box search at

normal flight speed. As shown in the figure, the helicopter follows this flight sequence with

acceptable accuracy.
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6.4 Extrinsic Calibration

In order to simplify the motion-stamping problem, we assume that the GPS/INS unit is

colocated with the camera in position and orientation, or, more realistically, that its mea-

surements can be corrected so that they are in the reference frame of the camera. Determi-

nation of the constant coordinate transformation between the camera and a GPS/INS unit

requires data from both sensors during a broad range of positions and orientations, which

is possible with the small Berkeley platform by maneuvering it manually (see Figure 6.5)

but which is not possible with the full-sized Boeing platform. Calibration of the camera

with the GPS/INS unit on the Boeing platform requires the composition of two coordinate

transformations: the transformation between the vehicle GPS/INS unit and an additional

GPS/INS unit on the (removable) camera platform, and the transformation between the ad-

ditional GPS/INS unit and the camera. Since the additional GPS/INS unit is on the camera

platform, the transformation between this sensor and the camera can be estimated from data

collected by manual manipulation of the camera platform alone. The additional calibration

between the two GPS/INS units is required to allow the system to use the vehicle GPS/INS

unit, which is located near the vehicle’s center of gravity and is of higher quality than the

one on the camera platform.

6.4.1 GPS/INS to GPS/INS

In this section we assume that the two GPS/INS devices give measurements (t1, R1, T1)

and (t2, R2, T2), where ti is the time of the measurement, Ri is a 3x3 rotation matrix cor-

responding to the orientation of the sensor, and Ti is a 3x1 vector corresponding to the

location of the sensor. Ri and Ti are defined such that pw = Ripi + Ti where pi is a point

in the reference frame of the ith GPS/INS device and pw are the coordinates of the same

point in the world reference frame. We want to find (R, T ) such that p1 = Rp2 + T .

Because the location measurements from the GPS/INS devices are very noisy and are gen-
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Figure 6.5: Camera to GPS/INS calibration. Courtesy of David Shim.
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erally inconsistent with each other (particularly in the vertical direction), and because we

can find R without using T1 and T2, we directly measure T .

If we had pairs of measurements R1 and R2 at the same times t = t1 = t2, we would

have direct measurements of R given by R1
T
R2. In practice, we use pairs of measurements

such that |t1 − t2| ≤ δ. For each such pair we form a linear equation of the form









R1 0 0

0 R1 0

0 0 R1




















r11

r21

...

r33












=












r11
2

r21
2

...

r33
2












(6.4)

where rij is the i, j element of R and rij
2 is the i, j element of R2. Stacking many such

equations, we have Ax = b. We would like to find x that minimizes ||Ax− b||22 subject to

det R = 1 (R is a rotation matrix). If we relax the problem by eliminating the requirement

that R be a rotation matrix then the unconstrained optimization problem is a least squares

problem, which is easily solved by x = A†b where A† is the pseudoinverse of A. If R̃ is the

solution found by least squares, the closest orthogonal matrix (by Frobenius norm) is given

by

R = R̃

(

R̃
T
R̃

)− 1
2

, (6.5)

the polar factor of the polar decomposition of R̃ [32],[33].

6.4.2 Camera to GPS/INS

We assume that the GPS/INS device gives measurements (t1, R1, T1) as above and that

the camera gives measurements (t2, f1, x1, y1, . . . , fn, xn, yn), where fi indicates whether

corner i on the chess board is visible in the image and, if it is visible, xi, yi specifies its

location in calibrated image coordinates. Ri and Ti are defined as above. Once again, we

want to find (R, T ) such that p1 = Rp2 + T . Because the location measurements from the
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GPS/INS device are very noisy (particularly in the vertical direction), and because we can

find R without using T1 (or T2 for that matter), we directly measure T .

Again we find pairs of measurements such that |t1 − t2| ≤ δ. We then take random

pairs of these pairs, i.e. the pair consisting of [(t1, R1, T1) , (t2, f1, x1, y1, . . . , fn, xn, yn)]

and
[(

t′1, R
′
1, T

′

1

)
, (t′2, f

′
1, x

′
1, y

′
1, . . . , f

′
n, x′

n, y′
n)
]
, such that the camera measurements have

at least 10 chess board corners in common (
∑

fif
′
i ≥ 10). Let xi =

[

xi yi 1

]T

and

x′

i
=

[

x′
i y′

i 1

]T

. Using the point correspondences
{
xi, x

′

i
|fif

′
i = 1

}
, we compute a

homography H using the normalized Direct Linear Transform (DLT) algorithm [34]. If all

of the corresponding world points lie exactly on a plane, λx′

i
= Hxi for some λ ∀i such

that fif
′
i = 1 (H is only defined up to scale). Therefore x′

i
× Hxi = 0. Arranging into a

standard linear form, we get






0
T −xi

T y′
ix

T
i

xi
T

0
T −x′

ixi
T


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
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

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= 0 (6.6)

where hij is the i, j element of H and we have omitted the third row because it is linearly

dependent on the first two. Since the corner detection is not exact (it is discretized to the

nearest pixel), we want to find H that minimizes ||Ah||22 subject to ||h||2 = 1, where Ah

is at least 10 of the above equations stacked together (theoretically only 8 correspondences

are required to estimate a homography, but in practice better results are achieved with more

than 8 points). The solution to this optimization problem is given by the least singular

vector of A. This is the unnormalized DLT algorithm. The normalized DLT algorithm finds

similarity transforms T and T′, each consisting of a translation and a scaling (both in the

xy plane), such that {Txi|fif
′
i = 1} and

{
T′x′

i
|fif

′
i = 1

}
both have mean

[

0 0 1

]T

and average distance
√

2 from the origin in the xy plane. It then computes H̃ using the
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unnormalized DLT algorithm on the normalized data; the final result is H = T′−1
H̃T.

Since the scene is planar, the relative rotation between the two cameras in the pair

is given, up to scale, by H [34]. Therefore we find R′
2
T
R2 using Equation 6.5, using as

input H normalized so that it has positive determinant and one column of unit norm. We

find R′
1
T
R1 directly from the GPS/INS data. Since

(

R′
2
T
R2

)

= RT
(

R′
1
T
R1

)

R, for each
[
(t1, R1, T1) , (t2, f1, x1, y1, . . . , fn, xn, yn) ,

(
t′1, R

′
1, T

′

1

)
, (t′2, f

′
1, x

′
1, y

′
1, . . . , f

′
n, x

′
n, y′

n)
]

we can write
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= 0 (6.7)

where rij is the i, j element of R and qij is the i, j element of R′
2
T
R2. Stacking many

such equations and minimizing gives the optimization problem minimize ||Ax||22 subject to

||x||2 = 1 and det R = 1, which we approximate by dropping the second equality con-

straint, finding the least singular vector of A, and using Equation 6.5 with input normalized

to have positive determinant and one column of unit norm.

6.5 Conclusion

In this chapter, we have provided details of the Berkeley UAV testbed, as well as the ex-

trinsic calibration procedure used for both the Boeing and Berkeley vehicles. Experimental

mapping results from both vehicles will given in Chapter 7.
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Chapter 7

Results

The content of this chapter is based on published work coauthored with Christopher Geyer,

Marci Meingast, and Shankar Sastry [1], and on unpublished work coauthored with David

Shim, Christopher Geyer, and Shankar Sastry [2]. This material is used with the permission

of the coauthors.

7.1 Introduction

In this chapter, we present results of running the mapping system on synthetic sequences,

as well as on real sequences from both the Boeing and the Berkeley platforms. Since the

accuracy of the online motion stamping algorithms such as those discussed in Chapters 4

and 5 have thus far proven to be insufficient for our needs, for the purposes of the results

from real data in this report we separate the experiment into three phases to showcase

the performance of the other components: In the first phase, the vision high-level planner

directed the helicopter to perform the box search while it collected image data. In the

second phase, we performed the offline motion stamping algorithm described in Section

2.3, followed by RMFPP running on similar hardware to the helicopter vision computer

in better than real time. In the third phase, we executed the closer inspection and landing
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Figure 7.1: Sample synthetic image rendered from satellite imagery and Digital Terrain
Elevation Data (DTED) elevation data.

maneuver using a premade elevation and appearance map.

7.2 Results From Synthetic Data

c©2006 IEEE. Reprinted, with permission, from [1].
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7.3 Results From Experimental Data

Figure 7.5 shows a similar terrain reconstruction result using experimental aerial im-

agery from the Berkeley vehicle at Richmond Field Station. Although much of the left side

of the view is flat and uneventful (as it should be), the trees in the middle of the view and

the road on the right are clearly visible.

7.4 Conclusion

This chapter has given mapping results using synthetic imagery, as well as using experi-

mental imagery captured from both the Boeing and Berkeley platforms. Although we were

unable to accurately motion-stamp the images in real time, and hence were unable to build

and use the elevation and appearance map in real time, we have shown the abilities of

crucial pieces of the mapping and landing system.

1 c©2006 IEEE. Reprinted, with permission, from [1].
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Figure 7.5: Berkeley real images experiment: The reconstructed appearance draped over
the reconstructed elevation. Reproduced, with permission, from [2].
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Chapter 8

Conclusion

In this report, we have presented work toward a vision-based landing system for unmanned

rotorcraft in unknown terrain using our new high-accuracy Recursive Multi-Frame Planar

Parallax algorithm [1] for terrain mapping. Although we have not yet succeeded in finding

a motion-stamping algorithm that performs to the needs of our next-generation approach in

the adverse circumstances of high-altitude flight, we are confident that such an algorithm

exists, and in the meantime we have given an in-depth description of the vision system,

an overview of our experimental platforms, and both synthetic and experimental accurate

real-time terrain mapping results.
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